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LETTER TO THE EDITOR 

Smoluchowski and beyond: a field theoretical study of 
coagulation/fragmentation processes 

David Elderfield 
Physics Department, Imperial College of Science and Technology, London SW7 2B2,  UK 

Received 5 November 1986 

Abstract. Adopting simple field theoretical techniques we demonstrate how the 
Smoluchowski approach to reaction-diffusion models can be systematically corrected. 
Focusing on  coagulation/fragmentation processes we identify the upper critical dimension 
d,  = 2 below which finite mobility corrections are important and full universality (lattice 
independence, etc) can be achieved. Trends seen by direct simulation of simple lattice 
models for d > 2 are confirmed, whilst problems of interpretation exist for d < 2. 

Coagulation and fragmentation processes are central to our understanding of many 
diverse physical, chemical or biological systems. Applications arise, for example, in 
polymer and colloidal science (Friedlander 1977), antigen-antibody aggregation 
(Johnston and Benedek 1984) and cluster formation in galaxies (Silk 1980). To model 
these systems the Smoluchowski (1917) approach, which may be characterised as the 
simplest mean-field (or infinite mobility) approximation, is often used, whilst more 
recently there has been a trend towards the direct simulation of simple lattice models. 
Scaling predictions based on the Smoluchowski rate equations generally find support 
both from experiment (Weitz and Lin 1986) and from numerical simulations, as one 
would expect for d > d,, the upper critical dimension. In particular simulations by 
Family et a1 (1986) of the coagulation/fragmentation reaction 

P 
X + X S  k x,+, (1) 

suggest that if k Z 0 ,  d,< 1, whilst for k=0, d , = 2  (Vicsek and Family 1984). We 
disagree. Adopting field theoretical techniques recently developed (Elderfield 1985a, b, 
Grassberger and Scheunert 1980, Peliti 1985) we shall argue for d ,  = 2 in both cases. 
Broadly the scaling behaviour is representative of a ‘tricritical’ Schlogl model (Elderfield 
and Vvedensky 1985 and references therein), whilst if k = 0 the model is closely related 
to the diffusive annihilation model discussed by Peliti (1986). To understand this 
discrepancy one must presume that the d = 1 simulations of Family et a1 (1986) relate 
only to the strong diffusion regime for which the Smoluchowski rate equations always 
apply if d > 0 .  Our field theory contains a pure diffusive mode associated with the 
conserved density m(r,  t )  = & kpk, where &(r, t) is the density of k-mers, as one would 
expect. It is interesting, however, to observe that a novel Lagrangian symmetry is 
associated with this property and thus one has a Goldstone mode. Happily we can 
show that the physics is only weakly modified by this Goldstone for d > 2, whilst for 
d e 2 it is important but controllable. 
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Given the coagulation/fragmentation reaction (1) it is natural to introduce the 
following spatially discrete Markovian reaction-diff usion equation (Gardiner 1983): 

- ( { x k ( i ) } ?  t ) =  C D,, C ( ( X ~ ( ~ ) + l ) ~ ( { X ~ ( ~ ) } ~ ~ , X r ( ~ ) + l , X ~ ( j ) - l ,  t) 
N 3D aP 

at i , j = l  r = l  

X , ( i ) +  I ,  X s ( i ) + l ,  t ) - X r ( i ) X s ( i ) P ( { X k ( I ) } ,  t ) )  
N m  

I = 1  r,s 
+i C krs((Xr+A(i)+ 1 ) P ( { X k ( I ) } ~ r , s , , + , , X r + s ( i ) + l , X r ( i ) - l ,  t) 

- X + S  ( i )  P({Xk ( U 1, t 1) ( 2 )  
where X r (  i f  is the number of molecules of mass r in the ith spatial cell. The non-local 
terms represent cell to cell diffusion whilst the local terms are specified by the reaction 
(1). To solve equations such as ( 2 )  we seek solutions in the form of a Poisson transform 
(Gardiner and Chaturvedi 1977, Elderfield 1985a) 

where V is a closed contour in the complex plane and as suchf({a,(i)}) is best viewed 
as a Markovian quasi-probability. Direct substitution of (3) into ( 2 )  leads to the exact 
Fokker-Planck description 

x ( p r s a r (  i )  as ( i )  - ki,Tar+s( i)) (4) 
which for our purposes is best redeveloped into a part integral form. Adopting a 
variant of the Martin-Siggia-Rose formalism one obtains a generating functional 
Z( 7, I )  for the Poisson correlation and response functions in the form (Elderfield 
1985a, b, Elderfield and Vvedensky 1986) 

Z( [ I) = I Ed&] [da ]  exp( d t (L+  la + 76)) 

where the Lagrangian L is given in the continuum limit ( a  + 0) by 

L =  d r  c i & ( r ,  t )  -DV2+- ar(r ,  t )  I d ( ,  ( :t) 
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As one might anticipate, Poisson correlation and response functions are given by 

Of course only the concentration fluctuations are of direct physical interest. Happily 
for equal-time correlations, simple connection formulae are evident from (3) 

whilst for multi-time functions generalisations have been derived by Elderfield (1985a). 
Given the Lagrangian L, it is now a fairly simple task to both recover the 

Smoluchowski rate equations and discuss the corrections associated with finite mobility 
(D-’ # 0). The deterministic or mean-field approximation is defined by 

aLla& = 0 (9) 

with 6 = 0, trivially (see de Dominicis and Peliti 1978, Elderfield 198%). Performing 
the differentiation one finds directly the Smoluchowski equations in the form 

a Ps m X 

(10) - -Dv’P~ =i  C ( a d P , m p l p m - k l m p l + m ) -  1 ( a d p m s p m p s  - k m s ~ m + s )  
at  1, m m = l  

l + m = s  

where we have used the connection formulae (8) to introduce pr ,  the density of 
molecules with mass r. For D + CO the spatial term may be dropped, for homogeneity 
is then ensured at all length scales. In this way we reproduce the Smoluchowski 
equation quoted by Family et a1 (1986). 

To discuss the finite mobility corrections to (10) it is helpful to first suppress the 
‘internal’ degrees of freedom and study the model Lagrangian L*: 

a - [ ( 1 - i 6 ) ’ - ( 1 - i 6 ) ] ( k a - p a d a 2 )  

Rescaling 6, a this may for k # 0 be thrown into a symmetrised form reminiscent of 
a Schlogl model (Elderfield and Vvedensky 1985) 

o - o d ’ 2 g ( i S o ’ + b 2 0 ) - p o d ( & a ~ 2 ]  (12) 

where the cubic coupling g satisfies -g2 = pk.  For k + 0 at finite g, p this model exhibits 
the simplest non-equilibrium continuous phase transition. One finds that d, = 4 and 
the universality class is that of directed percolation or Reggeon theory. However in 
the present case g depends strongly on k so that the physics of fragmentation/coagula- 
tion is very different. Let us consider for example the equation of motion (BrCzin et 
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a1 1976). For the Lagrangian L, one finds 

Here r(k, M) is the vertex generator given by 

and U, w are associated with source terms v ~ r ~ , j w & ~  we introduce into L,. Now 
M = (a) is precisely the density p (see ( 8 ) ) ,  whilst M = 0, so a low density approximation 
yields the dynamical equation 

(i- DV2+ k p(r ,  t )  ) 
= g { drld { dt ‘  1 dr’Id { dt” A(r, t 1 r’, t ’ ,  rs, t” )p(r ’ ,  t ‘ ) p ( r ” ,  t”)+O(p3) 

( 1 5 )  
where the effective interaction is given by 

Notice that the other terms evident from (13)  vanish identically because they do not 
break the important symmetry 

& ( t )  e a ( - t )  (17)  

evident from (12 ) .  In this way we obtain perturbative control of the finite mobility 
corrections to the Smoluchowski rate equations, which correspond here to the tree 
level, mean-field or deterministic approximation. We are primarily interested in 
stationary homogeneous solutions of ( 1 5 )  so it is sufficient to focus on the long- 
wavelength low-frequency behaviour of the effective reactivity A (16 ) .  Analysing the 
perturbative development (16 )  it is clear that the structure of A depends strongly on 
two dimensionless couplings zs, 2, associated, respectively, with the cubic (Schlogl) 
and quartic (annihilation, X + X + 0) couplings. We shall naturally assume that the 
diffusion constant D satisfies 

1/L2<< k / D < c  l / a 2  (18 )  

where L, ‘U’  are length scales characteristic of the reaction vessel and the underlying 
lattice, respectively. The left-hand inequality implies that the model is not trivially 
‘zero dimensional’ and sensitive to boundary conditions, whilst the right bound is 
necessary but not suficient to eliminate the lattice effects. As one would expect the 
behaviour of the reactivity A depends strongly on the spatial dimension. We find the 
following structures as d decreases. 

(i)  d > 4. The theory is non-renormalisable and A depends strongly on the underly- 
ing lattice. Happily, however, for this case (16 )  corresponds to a perturbative develop- 
ment in terms of dimensionless couplings 

z, = g2a4/  D2 z, = pa2/  D 
so at high mobilities D + m ,  the corrections are small. 
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(ii) 4 > d > 2 The cubic coupling g is renormalisable leading only to a weak lattice 
dependence. One has 

2 2 b 2  ( d - 4 ) / 2  

z s = ( % )  (5) 
which leads to Schlogl-like scaling for k + 0, g finite. For our case, however, -g2 = kp, 
so we have 

and thus given (18), only weak corrections at high mobility. The quartic coupling p 
is, by contrast, non-renormalisable, so the d > 4 behaviour persists, leading to weak 
corrections in terms of zA: 

zA = pa2/ D. (22) 

(iii) d < 2. The theory is finally fully renormalisable so that A is only very weakly 
dependent on the lattice, with zs, Z, given by 

In order to assign the upper critical dimension to such a theory we consider two 
features evident from the above. First we would only expect to see fully universal 
scaling for d < 2, since only then is the theory fully renormalisable and hence insensitive 
to lattice effects. Secondly, and for our purposes more importantly, we observe that 
the domain of validity of the Smoluchowski rate equations is more strongly controlled 
by (23) for d < 2  than by (19) or (20) for d > 2 ,  given that to maintain lattice 
independence one must assume k u 2 / D < <  1 (18). For this model it would thus seem 
to be clear that d,  = 2, in spite of the claim of Family et a1 (1986) that d,  < 1 for k Z 0. 
To understand this discrepancy one must presume that the d = 1 simulations of these 
authors relate only to the strong diffusion regime D + CO for which the Smoluchowski 
approach is always appropriate if d > 0 (see (19), (21)-(23)). 

Reintroducing the internal degrees of freedom, the above argument is, with one 
proviso, simply generalised, for the mass matrix associated with the field theory is 
proportional to k. Associated with the conserved density m = Z k  k p k ( r )  there is a 
‘Goldstone’ or pure diffusion mode, which implies that the Green function G (m ) 
appearing in equation (16) takes the form 

where the masses A, - k are the non-zero eigenvalues of the mass matrix Ma*. 

As one might expect (i ,bkl, I&) are simply the left- and right-hand eigenfunctions of M 
and in particular (Gal = (1 ,2 ,3 ,  . . . ), Ii,bo) = (1 ,0,0.  . . ). For canonical choice k,s = 
( r  + s)@ for some p corresponding to tree-like clusters (Family et a1 1986), and all the 
eigenvalues A, are positive as desired. Introducing (24) into the graphical expansion 
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(16) for the effective interaction A it might seem that this Goldstone is dangerous for 
d < 4. Happily, however, this conclusion is premature. Making the decomposition 

- aolJ/o) = P & - &o( $bot = /? (26) 

and simply ignoring the ‘massive’ components P, 
led to the following effective Lagrangian for the Goldstone mode io, a. 

as a first approximation, one is 

LG = 1 d r d [ i C ? o ( ~ - D V 2 ) a o + a d p ( C ? o ~ o ) 2 ] .  

This Lagrangian LG is closely related to a class described recently by Elderfield and 
Wilby (1987) and has a number of interesting properties. One finds that d,  = 2 and 
moreover there exists an infrared stable fixed point in d = 2 - E for the associated 
renormalisation group equations. Consequently, the Goldstone is important but not 
dangerous for d < 2 and can be ignored for d > 2. It is of course important that the 
Lagrangian LG cannot generate a massAdynamically, so we must now consider the 
influence of the massive fluctuations P, P (26). Fortunately, associated with the 
conserved density m = Z, kp,( r, t )  there is a novel Lagrangian symmetry: 

lk+Ike-kA+ie-kA - -DV2 ) 

from which one can formulate Ward identities of the form 

az 
ah 
- ( f ( A ) ,  l ( A ) )  =O. 

Evaluating (29) using (28) and (6) one finds the desired diffusion equation 

( b - D V 2 ) m ( r ,  t )=0 .  

To summarise we have argued that generally for coagulation/ fragmentation reactions 
d,  = 2, with deviations from the Smoluchowski rate predictions most evident for k + 0. 
The scaling behaviour for d < 2  can be broadly classified as tricritical in that weak 
Schlogl singularities ( d ,  = 4, X + X e X) mix with those associated with diffusive 
annihilation ( d ,  = 2, X + X + 0). Additionally the system contains a Goldstone or pure 
diffusive mode, which is important but not uncontrollable for d < 2 and ignorable 
above. Our conclusions are in accord with simulations for d > 2 by Family et a1 (1986) 
or Viscek and Family (1984), but point to discrepancies in d = 1. We presume that 
the one-dimensional simulations relate only to the strong diffusion regime D + 00 to 
which the Smoluchowki description is always appropriate if d > 0. 

The author would like to thank the SERC for support and Mr M R Wilby for helpful 
comments. 
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